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Gortler vortex formation at the inner cylinder in 
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The evolution of small counter-rotating circumferential vortices in Taylor-Couette 
flow was examined using the laser induced fluorescence and alumina particle flow 
visualization techniques. The objective of the study was to critically evaluate the 
hypothesis of Barcilon et al. (1979) and Barcilon & Brindley (1984) that Gortler 
vortices form close to the cylinder walls at moderately high Taylor numbers. Three 
radius ratios spanning an order of magnitude, 0.084 < Rin/Rout < 0.877, were 
examined over a Taylor number range of 3 x lo4 < Ta < 3 x lo8. Still-photograph 
sequences taken from video records of the LIP experiments are presented showing 
vortex pairs close to the inner cylinder wall at  Taylor numbers an order of magnitude 
smaller than those reported by Barcilon and co-workers. Measurements of the core- 
to-core separation between counter-rotating vortices were made in order to estimate 
the wavenumber of the instability. These measurements agree remarkably well with 
the theoretical analysis of Barcilon and co-workers particularly for the small- and 
medium-gap experiments. The present measurements indicate that there is a -$ 
power law relationship between the Gortler wavelength and Taylor number. This is 
consistent with the work of Barcilon & Brindley (1984). However, the present study 
indicates that the Gortler vortices first form at the inner cylinder wall, and that a full 
theoretical treatment must include inner-wall effects. 

NJ 08855-0909, USA 

1. Introduction 
In  the late 1970s, Swinney & Gollub conducted their now famous studies in 

Taylor-Couette flows showing that transition to turbulence is better described as a 
chaotic process rather than as an infinite succession of hydrodynamic instabilities. A 
detailed description of their work may be found in Fenstermacher, Swinney & Gollub 
(1979). At the same time, Barcilon et al. (1979) were conducting very similar 
experiments but focusing on coherent structures in the moderate to high Taylor 
number range. They formulated an hypothesis that at  high Taylor numbers, 
boundary layers form close to the cylinder walls which subsequently become 
unstable to Gortler-type instabilities. They presented photographs showing 'her- 
ringbone shaped streaks ' which they argued was evidence of Gortler vortices at the 
outer cylinder wall. Later, Barcilon & Brindley (1984) developed an analysis 
providing a theoretical basis for their hypothesis. To date, however, there are no flow 
visualization studies which clearly show the formation of streamwise counter- 
rotating vortices forming close to the cylinder walls. 

The objective of this investigation was to critically evaluate the Barcilon et al. 
(1979), Barcilon & Brindley (1984) hypothesis. Specifically, it will be shown that 
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counter-rotating vortices do in fact appear close to the cylinder walls at high Taylor 
numbers. The significant results from this work, in which a larger range of Taylor 
numbers and gap widths were examined, were that the counter-rotating vortices 
appeared first at the inner cylinder wall, these vortices occurred at Taylor numbers 
an order of magnitude lower than those predicted in the earlier studies. 

1.1.  Definitions 
Before proceeding, it is necessary to note that there are a number of definitions of 
Taylor number, Ta,  commonly in use. In this paper, Ta will be defined as 

T a  = R,,S22dS/v2 = ( q , d 2 / v 2 )  (d/Rin)  = (Re:) (d /Rin) ,  (1)  

where R,,, Rout are the inner and outer cylinder radii, respectively, D the inner 
cylinder angular velocity, d = Rout-R,, the gap width, v the kinematic viscosity (in 
this case of water), U,, = R,,Q the circumferential speed of the inner cylinder 
surface, and Re, = Uind/v .  

1.2. A brief literature review 
Flow between concentric cylinders has proven to be a remarkably rich problem in 
fluid dynamics. Beginning with the early work of Taylor (1923), a myriad of complex 
and interesting phenomena have been observed and examined. The body of literature 
is correspondingly expansive. Part of the fascination with the Taylorzouette 
problem is the fact that such a simple flow geometry can produce such complexities. 
Much of the work involves studies of instabilities which manifest themselves at  
Taylor numbers slightly higher than the critical value for the onset of Taylor 
vortices. Examples include papers by Iooss (1986), Benjamin & Mullin (1982), and 
Cliffe & Mullin (1985), amongst many others. The problem of interest here, however, 
is the transition to turbulence which takes place a t  higher Taylor numbers than the 
works just cited. 

Fenstermacher et al. (1979) critically evaluated Landau’s postulate that turbulence 
occurs through an infinite succession of hydrodynamic instabilities. They used laser- 
Doppler anemometry to obtain spectra of the time-varying circumferential velocity 
in a Taylor-Couette flow with large aspect ratio. They also used reflective particles 
to visually observe the flow. For simplicity, they considered only the case of 
stationary outer cylinder and rotating inner cylinder. In their flow visualization 
studies, they observed an evolution to turbulence with increasing Taylor number. 
This evolution began with the formation of laminar axisymmetric toroidal vortices, 
followed by wavy toroidal vortices, and subsequently followed by the appearance of 
turbulent axisymmetric toroids. They observed that during this evolution the 
measured velocity spectra showed the presence of only two discrete frequencies 
before the flow exhibited chaotic behaviour. They argued that according to Landau’s 
postulate, the spectra should contain an increasing number of discrete-frequency 
spikes with increasing Taylor number. The fact that only two such peaks were 
observed before the spectra became broadband was strong evidence that the Landau 
postulate was not applicable. Because Fenstermacher et al. (1979) were more 
interested in transition as a dynamical system, they did not investigate the eddy 
structure of the flow in detail. 

Barcilon et al. (1979) conducted a very similar experiment which did concentrate 
on the coherent structures associated with transition. They examined three different 
test fluids in a narrow-gap experiment where the inner cylinder was rotated and the 
outer cylinder was stationary. Results included still photographs which looked very 
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similar to those of Fenstermacher et al. (1979). For Taylor numbers greater than 400 
times the critical onset Taylor number, they observed a ‘herring-bone pattern of 
streaks ’ whose appearance seemed to coincide with the presence of high-frequency 
fluctuations in the hot-film signals. Using insightful physical arguments, they 
concluded that these observations could be explained by the formation of Gortler- 
type vortices close to the cylinder walls. 

To provide a firm theoretical foundation for their hypothesis, Barcilon & Brindley 
(1984) formulated a mathematical model of the small-gap Taylor-Couette flow a t  
high Taylor number. They postulated the existence of two instabilities. Taylor and 
Gortler, with highly separated lengthscales. In that way, two independent stability 
problems could be treated and coupled using the method of matched asymptotic 
expansions. The justification for the large separation of scales was predicated on the 
argument that thin boundary layers form adjacent to the cylinder walls. This 
premise was supported with both experimental data and physical arguments. 
Barcilon & Brindley (1984) computed the wavelength of the Gortler vortices as a 
function of Taylor number and compared it to estimates made by examining their 
photographs. They concluded that Gortler vortices are responsible for the ‘herring- 
bone’ patterns observed in Barcilon et a1 (1979). 

Smith & Townsend (1982) and shortly thereafter, Townsend (1984) extended the 
analysis to even higher Taylor number to study the transition to turbulence. In  both 
papers, single x -probe and multiple-sensor hot-wire anemometry were used to 
examine the fine-scale structure in Taylor-Couette flow for Taylor numbers up to 
4 x lo9. In  order to obtain accurate mean statistics, a very low axial velocity was 
created in the gap to advect the flow structures past the stationary probes. The data 
obtained in these studies supported the idea of small-scale structure generation in the 
boundary layers close to the cylinder walls. Townsend (1984) argued that at 
moderately large Taylor numbers the velocity fluctuations associated with the small 
scales were Gortler vortices. However, in the very large Taylor number range, the 
near-wall turbulent structure was believed to exhibit characteristics similar to plane 
turbulent boundary layer flows. 

1.3. On the formation of Gortler vortices at the inner cylinder wall 
A t  the outset, it  would be worthwhile to establish that Gortler vortices can form close 
to the inner cylinder wall of the Taylor-Couette experiment. In  the original Gortler 
(1954) analysis, the boundary-layer flow over a stationary concave wall was shown 
to be unstable. A simple physical explanation of the Gortler mechanism is that there 
is a balance between the pressure gradient normal to the wall and the radial 
momentum flux of the flow, the centrifugal forces. For a concave wall, the 
circumferential velocity increases with decreasing radius (going away from the wall). 
This results in a radial pressure distribution where the pressure is highest at the wall. 
This pressure gradient serves to ‘turn ’ the fluid around the concave bend. If the flow 
speed is increased, or the radius of curvature decreased, the pressure at the wall will 
not be sufficiently large to ‘turn ’ the flow and Gortler vortices are generated. 

In the case of a fixed convex wall, with fluid moving around it, the radial inertia 
of the fluid and the radial pressure forces both act in the direction away from the 
wall. Gortler vortices do not occur in this case. In  Taylor-Couette flow, however, the 
inner cylinder is a moving convex wall. The circumferential velocity decreases with 
increming radius (again going away from the wall). In  this case, there is again a 
balance between the pressure gradient and the inertia of the flow. For a moving 
convex wall, the pressure gradient acts to ‘turn’ the flow around the convex bend. 
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So again, when the circumferential velocity is increased or the radius of curvature is 
decreased, the radial inertia of the flow will exceed the pressure forces and Gortler 
vortices will be generated. 

For Gortler vortices, the characteristic non-dimensional parameter should contain 
information about the boundary-layer thickness, the radius of curvature of the wall, 
and the free-stream velocity. Gortler (1954) defined this non-dimensional number as 

G = (U, S2/v2 )  SIR, (2) 

where U,, 8, and R are the free-stream velocity, boundary-layer thickness, and 
radius of curvature, respectively. Note that in a Taylor-Couette flow, there will be 
a different Gortler number for each cylinder; an appropriate ‘free-steam’ velocity 
needs to be defined for each cylinder wall. 

1.4. Objectives 
At this juncture, there have been no flow visualization studies done which clearly 
show the formation of small-scale counter-rotating vortices close to either the inner 
or outer cylinder walls. The limitation can be principally attributed to inadequacies 
in the flow visualization techniques used. That is, alumina particles or dyes 
illuminated from a diffuse light source will not provide the radial cross-sections of the 
flow needed to see the rotation of circumferentially oriented vortices. 

It has been well established that these small structures play a significant role in the 
transition from laminar Taylor vortices to turbulence. However, that role is not well 
understood. In the Taylor-Couette experiment, inner- and outer-cylinder wall 
boundary layers exist which are separated by and strongly influenced by the 
presence of the large Taylor vortices. This makes for an extremely complex flow. 
Consequently, direct visual studies of the gap are essential to a clear understanding 
of the dynamics and kinematics of the transition process. 

In this investigation, laser-induced-fluorescence flow visualization techniques were 
used to examine the fluid motions in the (r,z)-plane (i.e. orthogonal to the 
circumferential direction). The objectives of this study were : to provide conclusive 
visual evidence of small-scale counter-rotating vortex pairs (Gortler vortices) close to 
the inner cylinder wall; and to critically evaluate the assumptions of Barcilon t 
Brindley (1984) in the light of the present results. 

2. Apparatus 
A Taylor-Couette experiment consisting of a circular inner cylinder rotating 

concentrically inside a stationary outer cylinder was constructed for this investi- 
gation. The working fluid was water. Two flow visualization techniques including 
laser-induced fluorescence (LIF) and alumina particles were used to examine the 
flow. A brief description of the cylinder assembly appears in the following 
paragraphs; the reader is referred to Lee (1990) for greater detail. The flow 
visualization apparatus is described in $3. A drawing of the apparatus appears in 
figure 1.  

The outer cylinder was made from 153.35 cm long section of clear Plexiglas pipe 
with an inner diameter of 30.28 cm. Three different-diameter inner cylinders were 
used so that a range of gap sizes could be examined. The smallest of these cylinders 
was a 2.54 cm diameter brass shaft which also served as the drive shaft for the two 
larger inner cylinders. The brass shaft was 198 cm long and is shown in figure 1 
extending through the entire assembly. Two removable larger inner cylinders were 
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FIGURE 1 
including 

made from 152.40 cm lengths of Plexiglas pipe. The outer diameters measured 15.04 
and 26.57 cm for the medium and large inner cylinders, respectively. The 
corresponding aspect ratios (length :gap width) were 82 : I, 20 : 1, and 11 : 1 for the 
1.85, 7.62 and 13.87 cm gaps, respectively. 

A number of steps were taken to make the cylinders circular and to precisely centre 
the inner cylinder(s) inside the outer cylinder. First, spacer assemblies were 
constructed for the two larger inner cylinders to centre them on the brass drive shaft. 
Each assembly consisted of four precision machined circular plates with centred 
clearance holes that were cemented inside the inner cylinder (normal to the cylinder 
axis). Second, the inner cylinder assemblies were turned on a lathe to machine the 
outer diameter to machine tolerances. 

Finally, the end plates for the experiment were precision machined to ensure that 
the brass shaft was centred inside the outer cylinder and that tolerances on the inner 
diameter of the outer cylinder were maintained. Restraining plates were also placed 
around the outer cylinder to ensure a circular outer cylinder. The logic was that if the 
ends of the cylinder were forced into a circular restraint, then the rest of the cylinder 
would be forced to follow shape, at least to some degree. This was checked by 
measuring the outer diameter of the outer cylinder at the mid-height after the 
experiment was assembled. A t  the mid-height, the mean outer diameter of the outer 
cylinder was 30.76 cm, and the maximum deviation from the mean was 0.03 cm. The 
mean wall thickness was 0.48 cm with a maximum deviation of 0.018 cm. 

The outer diameters of the two larger inner cylinders were also measured after 
being machined. The outer diameters were measured at 30.48 cm intervals along the 
entire length of the cylinders and at the mid-lengths. At  each axial location, diameter 
measurements were made at 30' intervals around the cylinders' circumference. For 
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both inner cylinders, the maximum deviation in these measurements was less than 
0.013 em. 

The final component of the apparatus was the drive system. The brass shaft was 
driven by a 25 000 step-per-revolution microstepping motor and driver. Bevel gears 
with a 2 : 1 gear ratio were used to couple the motor output shaft to the brass inner 
cylinder drive shaft, as shown in figure 1. This resulted in the inner cylinders turning 
at a rate of one cylinder revolution per 50000 motor steps. A square-wave generator 
was used as the input to the motor controller. 

The motor controller produced a synchronization pulse after every motor step. This 
pulse was monitored along with the sweep-generator input signal during each 
experimental run using a dual-trace oscilloscope. When the motor speed varied 
measurably, the run was repeated. 

3. Experimental methods 
3.1. Flow visualization techniques 

Two different flow visualization techniques were used in this study. The primary 
visualization technique was LIP. However, to tie this work to previous studies, 
standard-time-exposure photography of alumina particles was also used. The LIF  
studies were done using an Innova 70-4 argon ion laser operating in all lines mode. 
The laser beam was aimed radially through the centre of the cylinders and spread 
into a vertical laser sheet by a 2.54 cm focal length cylindrical lens, illuminating the 
flow in the (r,z)-plane. This is shown in figure 2. The thickness of the sheet was - 0.2 em. The advantage of this viewing orientation was that it was possible to see 
flow patterns close t o  the inner cylinder wall. 

The fluid was marked with fluorescein dye injected upstream of the laser sheet. For 
the small- and medium-diameter inner cylinders (i.e. the large- and medium-gap 
cases), dye was injected using a syringe and a long stainless steel tube of 0.15 em outer 
diameter inserted between the cylinders through a hole in the top end plate. The 
most effective method of marking the flow close to the inner cylinder was to slowly 
bleed dye right onto the surface of the inner cylinders and subsequently remove the 
injection tube. For the Taylor numbers examined, dye remained a t  the inner cylinder 
surface several minutes after the injection tube was withdrawn. Near-wall vortices 
would entrain dyed fluid away from the inner cylinder wall, making the vortices 
visible. 

For the small-gap experiments, dye was slowly injected through a vertical row of 
0.10 em diameter holes drilled in the side of the outer cylinder. The row was 30.48 em 
long and centred about the mid-height of the outer cylinder. This alternative 
injection method was used because the small gap was too small to easily manoeuvre 
the stainless steel tube, and the rotation speeds of the inner cylinder were high 
enough that the dye was quickly washed off the inner cylinder surface. 

To establish that the near-wall eddies were not caused by the dye injection 
methods, a cloud of dye was placed into the gap before spinning the inner cylinder. 
The inner cylinder was then rotated a t  the speed corresponding to the desired Taylor 
number. While the quality of the visualization was not very high, it was good enough 
to observe the flow close to the inner cylinder wall. This test was run for a number 
of Taylor numbers for each gap size. In  every case, the flow patterns observed using 
the dye cloud were identical to those seen using the dye injection techniques 
described in the previous paragraphs. It was concluded that the injection techniques 
did not adversely affect the flow. 
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FIGURE 2. Oblique-view drawing showing the LIF visualization apparatus and orientation. 

FIGURE 3. Top-view schematic showing the refraction effects associated with a curved wall. 

Gap width, d Aspect ratio 
(em) R,nIRout (lengthlgap) Tacrit Ta-range TalTa,,,,-range 

1.85 0.88 82 1500 30 x 103-30 x lo5 2@2000 
7.62 0.50 20 4700 30 x 105-137 x 10' 638-29 150 

13.87 0.084 11 290000 10 x 106-300 x 10' 3P1035 

TABLE 1. Parameter range for the Taylodouette investigation. A range of Taylor numbers was 
examined for each of three different gap sizes. The critical Taylor number is defmed in the text. 

Visual records of the LIF experiments were made using a Sony professional quality a in. video system. This included a 3CCD colour camera, video recorder, and frame 
code generator. The in. system was equipped with variable slow motion and frame- 
by-frame playback. 
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(a)  

FIGURE 4 ( a ,  b ) .  For caption see page 57. 

The video camera was positioned to view the entire gap. The orientations of the 
laser sheet and the video camera are shown in figure 2. Because of the curvature of 
the cylinders, there were non-uniform refraction effects in the radial direction; 
objects close t o  the inner cylinder appeared larger than objects close to the outer 
cylinder. This effect is illustrated schematically in figure 3 which shows initially 
parallel light rays emanating from various radial locations in the cylinder and 
passing through a ‘viewing plane’ representing the camera lens. As long as the 
camera was far away from the cylinders, refraction effects in the axial direction were 
minimal. 
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FIGURE 4(c,  d).  For caption see page 57. 

3.2. Quantitative analysis : measurement of the Gortler wavelength 
To facilitate subsequent theoretical analysis, estimates of the characteristic 
wavelength of the Gortler instabilities near the inner cylinder were needed. Results 
of this analysis are presented in $4.2. It will first be necessary to provide a description 
of the analysis. Note that a numerical stability analysis has recently been completed 
to complement the present study: the results from that study will appear in a 
separate paper by Woodruff & Wei. 

It was decided that the core-to-core separation distance between two counter- 
rotating vortices in a Gortler vortex pair should be measured in order to estimate the 
most unstable Gortler wavelength. The most unstable wavelength could be obtained 



56 T .  Wei,  E .  M .  Kline, S.  H.-K. Lee and S .  Woodruff 

(4 

tn 

FIGURE 4(e,f) .  For caption see page 57. 

by multiplying the core-to-core measurement by two. This choice was made 
primarily because single Gortler vortex pairs were observed far more frequently than 
multiple pairs. The small samples of multiple pairs virtually eliminated the 
possibility of measuring the distance between vortices of like rotation in adjacent 
Gortler vortex pairs. 

To improve the most unstable wavelength approximation, core-to-core mea- 
surements were made as soon as the pair was visible. Measurements were done with 
the aid of the reverse slow-motion playback feature of the video recorder. For a given 
Taylor number, the video was played until a counter-rotating vortex pair was seen. 
The tape was then reversed in slow motion playback until the vortex pair could just 
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FIQURE 4 (a-h). Sequence of still photographs showing the formations and growth of Gortler vortex 
pairs at  the inner cylinder wall. Pictures were taken from a video record of the medium gap a t  
TalTa,,,, = 2128. The stationary outer cylinder appears on the left of the photographs and the 
rotating inner cylinder appears on the right. The mean circumferential flow is out of the page. Time 
elapse between successive photographs is 0.8 s. Line drawings of the photographs, highlighting 
important features in the flow appear to the right of each photograph. 

barely be identified. The video frame was then frozen and the core-to-core 
measurement was made. The location of a vortex core was generally identifiable as 
a small spot near the centre of the vortex which contained no dye. In  certain 
instances, the exact location of the cores was difficult to determine and the 
approximate centre was used. 

In  order to account for the uncertainties in the core-to-core measurements, a 
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number of independent measurements were made for each Taylor number. Wherever 
possible, a sample size of twenty to twenty-five different vortex pairs were examined 
for a given Taylor number and gap size. Exceptions included the low Taylor number 
cases for all three gap sizes and the high Taylor number cases for the small gap, where 
the number of vortex pairs observed was relatively small, and only five to ten 
different vortex pairs were measured for each case. 

3.3. Experimental conditions 
A wide range of Reynolds numbers were examined in this investigation using three 
different gap sizes, 1.85, 7.62 and 13.87 cm. For each gap size, a range of Taylor 
numbers spanning over an order of magnitude was studied ; the range of parameters 
is shown in table 1 .  The overall range of Taylor numbers covered in this study was 
3 x lo4 < Ta < 3 x lo8. 

The critical Taylor number, TaCrit, in table 1 refers to the lowest value of Ta at 
which Taylor vortices first appear. The values of Tacrlt for the larger two gaps, 
presented in table 1 ,  were obtained by interpolating the results of Sparrow, Munro 
& Jonsson (1964), and Walowit, Tsao & DiPrima (1964). The value for the small-gap 
case was based on the observation that Taylor cells were seen in the experiment a t  
Taylor numbers slightly lower than the theoretical limit. 

4. Results 
4.1. Visual observations 

In  this section, still photographs of the flow visualizations are presented. The first set 
of photographs, figures 4-8, were taken from video records of the LIF studies. A 
number of time-exposure photographs of alumina particle visualization studies are 
also included in figure 9. The viewer orientation for all of the LIF photographs is the 
same. To assist in the interpretation of the visual images, computer assisted line 
tracings of the photographs have been included where necessary. The stationary 
outer cylinder appears on the left-hand side of the photographs, and is usually visible 
as a vertical white line. The rotating inner cylinder appears on the right-hand side 
of the photographs and can also be distinguished as a vertical white line. The rotation 
of the inner cylinder is always such that the mean circumferential flow is out of the 
page toward the viewer. Note that the cylinder walls appear curved in some of the 
photographs. This effect was caused by lens distortion of the Graflex camera used to 
make the photographs. 

Figure 4 is a sequence of eight still photographs taken from an LIF video record 
of a medium-gap run a t  a Taylor number of 1 x lo7 ; this corresponds to Ta/Ta,,,, = 
2128. The elapsed time between successive photographs is 0.8 s. The total duration 
of the sequence in figure 4 is 5.6 s. This corresponds to half a cylinder revolution. In 
this sequence, each photograph is filled primarily by a single Taylor cell which is 
rotating in a clockwise direction ; this can be most easily seen in the video tapes. An 
outflow boundary appears near the bottom of the pictures, particularly in figure 
4(e -g ) .  

In figure 4 ( a ) ,  there is a bright spot along the inner cylinder wall located 
approximately a quarter of the way down the photograph. This is labelled in the 
corresponding line drawing. Observation of the video tape in real time indicates that 
this spot evolves into a counter-rotating vortex pair. 

A short time later, figure 4(b ) ,  one can see that the spot has become ‘tau’ shaped 
as dye on the inner cylinder wall is lifted away from the wall into this flow structure. 
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FIQURE 5. Single still photograph and line drawings showing four simultaneously occurring Gortler 
vortex pairs. The photograph was taken from a medium-gap video record at Tu/Tu,,,, = 6383. The 
orientation of the flow is the same as in figure 4. 

In figure 4(c), the classic mushroom shape of a counter-rotating vortex pair is 
readily evident. Owing to the motion of the large Taylor cell, the vortex pair is being 
advected downward in the picture. 

In figure 4(d) ,  dye continues to be entrained into the vortex pair. It is possible to 
see the first evidence of a second vortex pair. This appears as a kink of dye 
immediately above the first vortex pair. The motion of the Taylor vortex continues 
to move the near-wall fluid downward. In  figure 4(e ) ,  the first vortex pair is located 
at  the centre right of the picture. The existence of the second vortex pair is clearly 
discernible in figure 4(f).  In  that frame, there are two mushroom shaped structures 
close to the inner cylinder wall. 

The rotation of the Taylor cell continues to move the near-wall vortex pairs 
toward the outflow boundary, In  figure 4(g), the outflow boundary appears 
approximately three-quarters of the way down the photograph. In  this frame, the 
first near-wall vortex pair was advected into the outflow boundary. One can see 
vestiges of the first vortex pair at  the outflow boundary. The second vortex pair can 
be seen approaching the outflow boundary. 

Once in the outflow boundary, the near-all vortices are deformed by the jet flow 
away from the wall. Depending on how energetic the near-wall vortices were, in the 
higher Taylor number flows, it was possible to track some of them all the way out to 
the outer cylinder. In  the final photograph, figure 4 ( h ) ,  the first vortex pair has been 
significantly deformed by the outflow boundary. The only remaining evidence of the 
first pair is the elongated spiral shape at the base of the outflow boundary. The 
second vortex pair very close to the outflow boundary at  this point is about to 
experience a similar fate. 

Figure 5 is a single still photograph taken from a medium-gap LIP run a t  Tu/ 
Tucrit = 6383, showing part of a Taylor cell filling the bottom three-quarters of 
the photograph. The sense of rotation of the Taylor cell is counter-clockwise. Four 
counter-rotating vortex pairs appear in this photograph. The smallest appears at the 
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(b)  

FIGURE 6 ( a d ) .  For caption see facing page. 

bottom of the photograph, close to the inner cylinder, while the largest appears 
above centre and is elongated across most of the gap. Again, the elongation is 
primarily due to the outflow boundary of the larger Taylor cells. Similar patterns 
were observed at higher Taylor numbers. 

Flow in a large gap was also examined. Figure 6 shows the development of counter- 
rotating vortices in a large gap at a Taylor number of 1 x lo'; TalTa,,,, = 34.5. For 
this large a gap, Taylor cells that spanned the entire gap were never observed over 
the Taylor number range examined. The photographic sequence shown in figure 6 
illustrates the first type of rotational motion observed. The time elapse between 
successive photographs is 100 s. 
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FIGURE S(u-A. Still-photograph sequence made from a large-gap LIF video record at Tu/Tu,,,, = 
34.5. The orientation is the same as in figure 4. Time elapse between successive photographs is 
100 s. 

It is interesting to note here that the Taylor number of this flow is large because 
of the size of the gap, 13.87 cm. The inner cylinder, the brass shaft, was rotating at 
only 5.2 revolutions per minute! To obtain the pictures shown in figure 6, the water 
was placed in the cylinder over 24 hours before the run. Then the inner cylinder was 
rotated at  the appropriate speed for over twelve hours. Dye was placed on the inner 
cylinder approximately thirty minutes prior to recording the flow on video tape. In  
addition, the laser was operated only while filming and the laser power was reduced 
to a minimum to prevent localized heating of the fluid. The salient feature of this 
sequence is that the rotational motion is very weak. Even when viewed in fast- 
forward mode, the dye patterns exhibited no circular motion. The flow pattern 
remains until the formation of a new ‘vortex ’ pair. 

At, higher Taylor numbers, for the large-gap case, the fluid close to the outer 
cylinder still did not appear to move very much. However, close to the inner cylinder 
wall, energetic small-scale counter-rotating vortices were constantly being generated. 
As the Taylor number is increased, the vortices were generated more frequently. This 
is shown in figure 7, in which four vortex pairs are clearly visible. This photograph 
was taken for TalTa,,, = 345. 

The final set of LIF experiments were conducted using a small gap, d = 1.85 cm 
over a Ta range of 20 < Ta/Ta,,,, < 2000. Representative still photographs taken 
from video records appear in figure 8. The small gap was the most difficult to obtain 
publication quality photographs for because of the relatively high speeds involved ; 
the fluorescein dye was rapidly dispersed by the fluid motions. For this reason, the 
highest Taylor number shown in figure 8 is TalTa,,, = 200. 

Figure 8 ( a )  shows a cross-sectional cut of the flow at TalTa,,,, = 20. This is well 
below the Taylor number at which the counter-rotating vortices first appear. In  this 
photograph, the Taylor cells can easily be seen. In  the video records, the cells 
appeared to oscillate up and down and their size seemed to oscillate as well. As will 

3-2 



62 T.  Wei, E .  M .  Kline, S.  H.-K. Lee and S. Woodruff 

FIGURE 7. Single still photograph and drawing showing simultaneously occurring Gortler vortex 
pairs at  the inner cylinder of a large-gap run. The photograph was taken from a video record at 
TalTa,,,, = 345. The orientation of the flow is the same as in figure 4. 

FIGURE 8(a-c). Three single still photographs and schematics showing the flow patterns in the 
small gap at three separate Taylor numbers. The flow orientation is described in figure 4. (a) Ta/ 
Ta,,,, = 20;  ( b )  Ta/Ta,,,, = 67; ( c )  TalTa,,,, = 200. 

be shown in figure 9, this may be attributed to the wavy nature of the Taylor cells a t  
this Taylor number. 

In figure 8 ( b ) ,  a single photograph is shown for TalTa,,,, = 67. At this Taylor 
number counter-rotating vortex pairs were observed to form very infrequently a t  the 
inner cylinder wall. One such vortex pair appears in the right-hand side of figure 
8 ( b ) .  Note that the Taylor cells are still clearly visible. 

As the Taylor number is increased, the frequency of occurrence of counter-rotating 
vortices at the inner cylinder wall increases. Simultaneously, the Taylor cells become 
less clearly defined in the (r,z)-view LIF experiments. An example of a counter- 
rotating vortex pair at  TalTa,,,, = 200, is presented in figure s ( ~ ) .  A small 
mushroom shape can be seen at the inner cylinder wall in the centre of the 
photograph. Notice also that the Taylor cells are not as well defined as in figures 8 (a )  
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FIGURE 9 (a-d). Alumina particle visualization photbgraphs of the small-gap flow covering a 
range of Taylor numbers including that shown in figure 8 :  ( a )  laminar wavy Taylor vortices at 
TalTa,,,, = 20; ( 6 )  wavy vortices at TalTa,,,, = 200; ( c )  the appearance of irregularities in the 
Taylor vortices, or a ‘turbulent spot ’, at TalTa,,,, = 200 which is caused by Gortler vortex pairs; 
(a) irregular wavy vortices at  TalTa,,,, = 667 showing evidence of the ‘herringbone’ structure ; 
(e) turbulent Taylor vortices at TalTa,,, = 2000 with ‘herringbones’ similar to that reported by 
Barcilon et al. (1979) and Barcilon & Brindley (1984). 

and 8(6) .  As previously stated, the video records made at higher Taylor numbers 
could not be reproduced well as still photographs. 

To connect the LIF experiments with previous visualization experiments, the 
classic alumina particle flow visualization studies were reproduced as part of this 
investigation. The resulting photographs are shown in figure 9. In each photograph, 
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FIQURE 10. Gortler wavelength measurements for the three different gaps plotted using the scaling 
prescribed by Barcilon & Brindley (1984). The circles, squares, and triangles represent the large, 
medium, and small gaps respectively. The solid line was obtained from Barcilon &, Brindley (1984) ; 
it  appears in the text as (4). 

the cylinder axis of symmetry is oriented vertically. The bright vertical lines are steel 
cables which were used to hold the top end plate tightly in place, but they correspond 
to the outer edges of the outer cylinder for this view. In all cases, the inner cylinder 
is rotating so that the flow is from left to right. 

Figure 9(u) shows a single still photograph taken a t  Ta/Tu,,, = 20. This is a 0.2 s 
time-exposure photograph. The wavy nature of the Taylor cells is clearly visible. 
However, it  should also be noted that the Taylor vortices appear to be laminar, albeit 
wavy, and that in the corresponding LIF experiments, vortex pairs were never 
observed a t  the inner cylinder wall. 

The photographs comprising figure 9(b, c) are 0.2 s time exposures taken a t  
Tu/Ta,,, = 200 corresponding to the Taylor numbers where counter-rotating 
vortices infrequently appear (see figure 8 c ) .  Figure 9(b) shows the wavy laminar 
Taylor cells. Figure 9(c) shows the flow at the same Taylor number but with a 
'turbulent spot' in the centre. It is argued that this 'spot' is the result of the 
formation of a counter-rotating vortex pair at the inner cylinder and the resulting 
disruption of the Taylor cell pattern. 

At  higher Taylor numbers, the inner-cylinder vortex pairs occur much more 
frequently. The Taylor cells take on a ' herring-bone ' pattern. This is shown in figures 
9(d) and 9(e) for the cases of Ta/TaCri, = 667 and 2000, respectively. 

4.2. Gortler wavelength measurements 
Figure 10 is a plot of Gortler wavelength, non-dimensionalized by the outer-cylinder 
radius, versus a characteristic Reynolds number squared, [QROut2/~]2, as prescribed 
by Barcilon & Brindley (1984). Circles, squares, and triangles represent the large-, 
medium-, and small-gap data, respectively. The error bars in the figures represent 
95 O h  confidence intervals computed from the multiple measurements made for each 
case. It was assumed that the probability density distribution of the data about the 
mean for each combination of gap width and Taylor number could be represented by 
a Gaussian with the corresponding mean and standard deviation. 

The solid line appearing in the figure was reproduced from the analytical results 
of Barcilon & Brindley (1984). Using the small-gap approximation and the method 
of matched asymptotic expansions, they obtained the following relation between 
Gortler wavelength and their characteristic Reynolds number : 

. 

h/Ro,, of Gi ( Q 2 R ~ , , / v 2 ) - ~ ,  (3) 
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FIGURE 1 1. Gortler wavelength measurements non-dimensionalized by [Ii, and v plotted 

versus TalTa,,,,. Symbols as in figure 10. 

where h is the Gortler wavelength and G, is the critical Gortler number for the onset 
of Gortler vortices. It was not entirely clear how the Gortler number, G, was defined 
by Barcilon & Brindley (1984); the definition printed in their text was not 
dimensionless. In their paper, they verified their analysis by plotting unpublished 
data of Quigley with the following function: 

Observe that (4) is consistent with the form indicated in (3) although, again, it was 
not clear from their text exactly how Barcilon & Brindley (1984) arrived at the 
constant of proportionality. The solid line in figure 10 is taken from (4). 

It is remarkable how well the present small- and medium-gap data agree with (4). 
This is construed as additional strong evidence that the vortices shown in $4.1 and 
the phenomena studied by Barcilon et al (1979) and Barcilon & Brindley (1984) are 
identical. The data follow the -f power dependence, which was found by computing 
a least-squares fit of the data for each gap size. But, even more surprising was that 
the small- and medium-gap data appear to fall nicely on (4) ; the intercepts match as 
well. Because Barcilon & Brindley (1984) used a narrow-gap approximation, it is not 
surprising that the present large-gap data do not collapse onto (4). This points to the 
need for an analysis which does not impose the small-gap constraint. 

Because the Gortler vortices were observed to form at the inner cylinder wall, it 
was concluded that the scaling proposed by Barcilon & Brindley (1984) was not 
sufficiently general to include the large-gap studies. Therefore, three alternative 
scalings were tried. The characteristic wavelength data non-dimensionalized by the 
cylinder gap width was plotted as a function of the ratio TalTa,,,,. The Gortler 
wavelength was scaled on inner-cylinder radius and plotted versus TalTa,,,. 
Finally, the wavelength data, scaled on inner-cylinder circumferential velocity and 
the kinematic viscosity of water, were also examined. This last scaling appears to 
show promise, and is shown in figure 11. However, at this juncture, it is difficult to 
conclusively identify an appropriate scaling. This issue will be addressed in a 
separate stability analysis paper by Woodruff & Wei. 

h/R,,, w 31.89(Q2R&,/v2)-f. (4) 

5. Discussion 
Results of LIF flow visualization experiments of Taylor-Couette flow indicate that 

at moderately high Taylor numbers, counter-rotating circumferential vortex pairs 
form close to the inner-cylinder wall. For the small-gap studies, 1.85 cm, these 
secondary vortices were first observed at  TalTa,,,, between 20 and 50. For the large- 
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gap case, d = 13.87 cm, Taylor vortices were not experimentally observed in this 
study. Rather, the ‘secondary ’ vortices were the first vortex flow observed. 

There are a number of contrasts between the present study and the published 
works of Barcilon et al. (1979) and Barcilon & Brindley (1984). In this study, counter- 
rotating vortices were observed close to the inner cylinder wall whereas Barcilon and 
co-workers made their observations primarily at the outer-cylinder wall. (It should 
be noted, however, that Barcilon & Brindley 1984 comment on unpublished studies 
in which the ‘ herring-bone streaks ’ were observed close to the inner cylinder as well.) 
In addition, the vortices observed in the present work were first observed at  Taylor 
numbers an order of magnitude lower than those reported by Barcilon et al. (1979). 

In spite of these differences, the results shown in figure 10 provide strong evidence 
that the vortices observed close to the inner cylinder wall in the present study and 
the herring-bone streaks discussed by Barcilon and co-workers are the same 
phenomenon. The issues to be addressed in the present study, therefore, are : why do 
the Gortler vortices first appear close to the inner cylinder, and what role do Gortler 
vortices play in transition to turbulence in Taylor-Couette flows ? The first question 
will be addressed in $5.1 while a discussion of the role of Gortler vortices on the 
transition to fully turbulent Taylor-Couette flow appears in $5.2. 

5.1. The formation of Gortler vortices at the inner cylinder 

The important parameters governing the strength of the Gortler mechanism are the 
radius of curvature and the gradient of the velocity. That is, the Gortler mechanism 
will become stronger as the radius of curvature decreases and/or as the velocity 
gradient becomes more negative. Obviously, the radius of curvature of the inner 
cylinder is less than that of the outer cylinder. In addition, the experiments of Smith 
& Townsend (1982) indicate that the magnitude of the velocity gradient at the inner 
cylinder is greater than that a t  the outer cylinder. 

Smith & Townsend (1982) plotted the non-dimensional angular momentum, 
Ur/U,,  Rin, as a function of non-dimensionalized radial location, ( r  -Rin)/(Rout -Rin). 
U and r are the local circumferential velocity and radial position, respectively. The 
local velocity gradient at  the cylinder walls may be found by rewriting the expression 
for the gradient of angular momentum : 

au/ar = {a( Ur)/ar - u/r. (5)  

For their highest-speed case, Uin = 9.8 m/s (the outer cylinder is stationary), the 
magnitude of the angular momentum gradient, li?I(Ur)/arl, at the inner cylinder wall 
is approximately 15% greater than the magnitude of the gradient a t  the outer 
cylinder wall. For lower speeds, the deviation is even greater. Keeping in mind that 
U 2 0 and a(Ur)/ar < 0,  it is clear from ( 5 )  that laU/arl will be greater at the inner 
cylinder wall than at the outer cylinder wall. 

The combination of the inner cylinder having a smaller radius of curvature and a 
larger (magnitude) velocity gradient than the outer cylinder indicates that Gortler 
vortices should form at the inner cylinder wall before appearing at  the outer cylinder. 
This does not contradict the work of Barcilon et al. (1979) and Barcilon & Brindley 
(1984). For the small-gap case, the difference between the radii of curvature of the 
inner and outer cylinders is not very great. Consequently, the characteristic velocity 
chosen by Barcilon & Brindley (1984), 52Rout, is also not very different from the 
surface velocity of the inner cylinder. Thus, their analysis showed very good 
agreement with the present data as shown in figure 10. In fact, Barcilon & Brindley 
(1984) noted that Mobbs could see structure at the inner cylinder if very light seeding 
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particle densities were used, but presumably the experiment could not be well 
photographed. However, the results of this study point to the need to closely 
examine the flow at the inner cylinder wall in order to gain insight into the formation 
of Gortler vortices. In addition, it suggests that generalized theoretical analysis of 
the problem should include inner-wall effects as well as outer-wall effects. 

5.2. Comments on Gortler vortices and the transition to turbulence 
in  Taylor-Couette flows 

Townsend (1984) addressed the problem of transition to turbulence in the 
Taylor-Couette experiment. He argued that at  moderately high Taylor numbers, the 
near-wall structure was dominated by Gortler vortices, characteristic of curved 
boundary layers. He further argued that as the Taylor number was increased still 
further, the near-wall structure became more like that of a plane turbulent boundary 
layer. This implies that there is a distinct difference between Gortler vortices and 
plane turbulent boundary layer structure. 

This assumption is in conflict with the turbulent boundary layer work of 
Blackwelder. In  a number of studies, the most noteworthy being by Swearingen & 
Blackwelder ( 1987), Blackwelder has presented the argument that the near-wall 
turbulent structure in a plane two-dimensional boundary layer may be caused by the 
amplification of Gortler instabilities. In  short, he argued that small surface 
imperfections in any physical experiment have sufficient curvature to generate 
Gortler vortices ; near-wall streamwise vortices found in plane turbulent boundary 
layers are created by the Gortler mechanism. Clearly this contradicts Townsend’s 
(1984) distinction between curvature-generated vortices and plane turbulent 
boundary layer vortices. 

This discrepancy highlights the need for further examination of the turbulence 
transition processes. Apropos of the Taylor-Couette experiment, it raises the 
question of the role of Gortler vortices in the transition to turbulence. If 
Blackwelder’s theory is correct, then the Gortler vortices observed in this study are 
directly contributing to the transition process. As the Taylor number is increased, 
the Gortler vortices become stronger and more numerous which leads to greater 
mixing close to the walls. It should be noted, in conclusion, that the Taylor-Couette 
flow at high Taylor numbers is extremely complex. There are additional structures, 
such as the flow associated with the inflow and outflow jets, which have not been 
addressed here. 

6. Conclusions 
Taylor-Couette flow at moderately high Taylor numbers was examined with LIF 

flow visualization techniques. The objectives were to test the Barcilon et al. (1979) 
and Barcilon & Brindley (1984) hypothesis that Gortler vortices are generated close 
to the cylinder wall for Ta/Ta,,,, > 400, and to gain insight into the role of these 
vortices in the transition to turbulence in Taylor-Couette flows. A large range of gap 
sizes and Taylor numbers were examined. Visual observations and measurements of 
the characteristic wavenumbers of the near-wall vortices led to the following con- 
clusions: (i) the hypothesis of Barcilon and co-workers concerning the formation of 
Gortler-type vortices in the near-wall boundary layers of Taylor-Couette flows is 
correct ; (ii) however, a complete theoretical analysis must include the observation 
that Gortler vortices first appear close to the inner cylinder wall and at Taylor 
numbers an order of magnitude lower than that reported by Barcilon and co-workers. 
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